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Universality Properties of the Stationary States in the 
One-Dimensional Coagulation-Diffusion Model with 
External Particle Input 
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We investigate with the help of analytical and numerical methods the reaction 
A + A ~ A on a one-dimensional lattice opened at one end and with an input 
of particles at the other end. We show that if the diffusion rates to the left and 
to the right are equal, for large x, the particle concentration c{x) behaves like 
A,x  -~ fix- measures the distance to the input end). If the diffusion rate in the 
direction pointing away from the source is larger than the one corresponding to 
the opposite direction, the particle concentration behaves tike A~x -t'2. The 
constants A, and A,, are independent of the input and the two coagulation rates. 
The universality of A,, comes as a surprise, since in the asymmetric case the 
system has a massive spectrum. 

KEY WORDS: Nonequilibrium statistical mechanics: reaction-diffusion 
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1. I N T R O D U C T I O N  

T h e  s tudy  o f  o n e - d i m e n s i o n a l  r e a c t i o n - d i f f u s i o n  m o d e l s  far  f r o m  t h e r m a l  

e q u i l i b r i u m  is a field o f  g r o w i n g  interest .  T h e  d y n a m i c s  o f  these  m o d e l s  is 

c h a r a c t e r i z e d  by n o n t r i v i a l  co r r e l a t i ons ,  so tha t  o r d i n a r y  mean- f i e ld  t echn i -  

ques  fail. T h e r e f o r e  t h e o r e t i c a l  d e s c r i p t i o n s  h a v e  t o  t a k e  loca l  f l uc tua t ions  

in to  accoun t .  In  gene ra l  th is  is a ve ry  diff icult  t a s k  and  a p p r o x i m a t i o n  

t e c h n i q u e s  ~.re needed .  H o w e v e r ,  the re  is a sma l l  n u m b e r  o f  exac t l y  solvable 

m o d e l s  whe re  we can  de r ive  exac t  results .  T h e  g r e a t  in te res t  in so lvab le  

m o d e l s  c o m e s  f r o m  the  fact  t ha t  the i r  phys i ca l  p rope r t i e s  a p p e a r  a lso  in 
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many other, more complicated models. If we consider one-dimensional 
two-state models (i.e., models with only one species of particles), there are 
only two classes of exactly solvable systems. The first class includes diffu- 
sion (or exclusion) models, which are solvable by means of Bethe ansatz 
techniques. The second class contains mainly models with an underlying 
theory of free fermions. The most important representative of this class is 
the so-called coagulation model, which is the subject of the present work. 

Coagulation models describe particles which diffuse stochastically in a 
d-dimensional space. When two particles meet at the same place they 
coalesce t o  a single one (A +A--* A). For a possible experimental realiza- 
tion see ref. 1. The theoretical study of coagulation models has a long 
history. It started with the observation that the critical dimension of the 
corresponding field theory is d,.= 2. ~-'~ A breakthrough toward the exact 
solution of the one-dimensional coagulation model on a lattice was the 
introduction of so-called interparticle distribution functions (IPDFs). ~ 
For certain reaction-diffusion processes the IPDF formalism leads to a 
hierarchy of decoupled differential equations similar to those obtained for 
the Glauber model/41 The most general conditions for the decoupling to 
occur as well as the cases when the underlying Hamiltonian can be 
diagonalized in terms of free fermions are given in ref. 5. A variety of exact 
solutions were found for the coagulation model with or without backreac- 
tion (decoagulation A ~ A -hA), 13~ 

The one-dimensional coagulation model with spatial homogeneous 
external particle input at all sites has been studied extensively ~6~ and 
algebraic relaxation times have been observed. In this paper we investigate 
the same model with open boundary conditions and localized particle input 
at the ends of the chain, which was considered for the first time in the 
mean-field approximation in ref. 7. In the present work we compute the 
particle concentration in the stationary state. We give the full solution on 
the lattice and in the continuum. The main motivation of this paper stems 
from the observation that in the mean-field approximation (to be reviewed 
later) the density of particles has an algebraic decay and one can see if one 
has universality properties. 

The coagulation model studied in this paper is defined as follows. 
Particles of one species diffuse stochastically on a linear one-dimensional 
lattice with L sites. The diffusion may be biased due to some external force. 
If two particles meet at the same site, they coalesce to a single one. In 
addition, particles are added stochastically with a given probability at the 
endpoints of the lattice. We use random sequential updates, i.e., we assume 
continuous time evolution which is described by a linear master equation. 
Altogether the dynamics is defined by the six nearest neighbor processes 
with rates shown in Fig. 1. 
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Fig. 1. Bulk and boundary processes in the coagulation-diffusion model, 

The master equation for a lattice of L sites can be written in a com- 
pact form by (for notations see ref. 8) 

0 
Ot IP(t)) = - H  IP(t)) (1.1) 

where the vector I P(t))  denotes the probability distribution. H is the time 
evolution operator, which can be written as a sum of nearest neighbor reac- 
tion matrices H,,., +~ plus two further matrices for particle input IL and IR: 

L - - !  

H = I s  ~ H,,.,,+, (1.2) 
I 1 =  I 

In the canonical basis of particle configurations ( l ~ ) ,  I~A) ,  IA~) ,  
[AA))  these matrices read 

/O 0 0 0 / 

0 a L - - a  n - - c  R 

H,.,,+t = 0 --as aR --Ct. 

~0 0 0 CL+Cn ..... +l 

(1.3) 

and 

( ) (pRo) 
PC 0 1R= --pg 0 L IL= --PL 0 I' (1.4) 

It is useful to introduce some notations: 

2(aR--aL) 
a R --F a L 

2(C~--CL) 

aR+aL 

2(cR+ cL) 
s 

aR+aL 
(1.5) 
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c(i) denotes the particle concentration at the site i. When we will consider 
the continuum limit (the lattice spacing 2 ~ 0), we will use the notation 

P(X)=2-~c  ' P = 2 '  g = 2 '  / ~=2  -5- (1.6) 

Before we give our results we remind the reader of the results of the 
improved mean-field calculations, tT~ Assuming that the coagulation rate • is 
proportional to the concentration ~=  (p(x),  for large values of x (we take 
PR = 0 and the source is at x = 0), the densities are 

q < 1 (bias to the left): p(x)  oc e x p ( -  IPl x) 

q = l  (symmetric diffusion): p(x )~ , (2 / ( ) l /2x  -I (1.7) 

q > 1 (bias to the right): p(x)  ~ (P/2()l/z x-I/2 

Notice the algebraic falloff for q >~ 1. 
The I P D F  method is applicable if 

aR=CR=q,  at = c t  = q  - t  (1.8) 

These conditions are equivalent to r = t and s = 2. This will also be called 
the fermionic case (the Hamiltonian can be diagonalized in terms of free 
fermionslS.9. ~ol). The special case q = I, PR =PL = oO was already studied in 
a paper by Derrida et al. ~ which was a source of inspiration for the 
present work. We list now our main results in the PR = 0 case: 

(a) Lattice in the thermodynamic limit ( j  fixed, L ~ or): 

1 1 (3  
c ( j )  =__71- ~- - -  O ( J  6), q =  1 (1.9) 

rq rcj 2 2~zj 4 -~  gP-L/J5 + 

{3q4+20q 2 -  1 (q2 1)3 x 
c ( j ) =  /(q,_--+i)Trjq2--1 [ 1 + ~ - ~ ( - ~ j  2 q 2 ( q _ + l ) p ~ j ~ ]  

+ O(j-5/:),  q >  1 (1.10) 

(j,:2 ) c ( j ) = q  4j (q2+ I) lrj + 0 ( j - 3 / 2 )  ' q<l (I.II) 
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Several exact values for c(j) are given in Appendix A. 

(b) Continuum and thermodynamic limit (x fixed, L ~  oo): 

2 12 5040 
p ( X ) = 7 [  x 7~ff2X5 b~ 'q -O( f f -6X-13 ) ,  q = l  (1.12) 

f-7-+ 1 rll_e_4' x___ 
q > l  (1.13) 

(c) Continuum and scaling l#nit (z = x/L fixed, L --* 0% q = 1 ): 

~(z)= 

lim Lp(x) = qS(z) 
x ~ ,-/- 

z = A'/L l i x e d  

sinh(zcz) + sin(r~z) 

cosh(nz)-cos(nz)  

+~ fsinh[2~(!/2-k)] +sin(nz) 
+ , ~ ,  ( ~  k ) ] - c o s ( ~ z )  

(1.14) 

+ ( k . - . - k )  t (1.15) 

As a by-product, the one-hole functions are also obtained. This result is not 
trivial, since they represent two-point correlation functions. 

In the long Section 2 and in Appendices A and B these results are 
derived. Many of our calculations are extensions of results obtained in 
refs. 9 and 10, from which we borrow the notations. Also in Section 2 we 
give the spectrum of the Hamiltonian in the one-hole sector. For q :~ 1 the 
spectrum is massive in spite of the algebraic behavior seen in Eqs. (1.10) 
and (1.13). For q =  1 most of the excitations are massless (they coincide 
with those of the open chain, pL=0) ,  but there are also some massive 
excitations with a mass given by p/_. In many systems timelike and space- 
like properties seem to be coupled in the sense that long-range correlations 
in time imply long-range correlations in space. This is not necessary valid 
for stochastic models which are not isotropic. As we will see in this model, 
one can have short-range correlations in time, but long-range correlations 
in space (for another example, see ref. 8). 

In Section 3 we consider the problem of the universality of the coef- 
ficients 2/re for the leading contribution in the q = 1 case [see Eqs. (1.9) and 
(1.12)] and of [ (q2_  1)/(q-' + 1) re] J/2 for q > 1 [see Eqs. (1.I0) and (1.13)] 
as well as of the finite-size scaling function (1.15). For this purpose we 
keep the definition ax//-ff~R/aL = q, but leave the coagulation rates Cn and Cz 
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arbitrary. For  the open chain (no input) the spectra are known to be 
massless for q = 1 and massive for q > 1.181 The modifications introduced by 
the boundary terms are supposed not to change radically the picture. Using 
Monte Carlo simulations (the details are given in Appendix C), we show 
that indeed for several values of c L and cR the expansion coefficients as well 
as the finite-size scaling functions are universal. 

The reader not interested in lengthy calculations can skip Section 2 
and proceed directly to Section 3. 

2. EXACT SOLUTION IN THE a R = c R =  q,  a t = c , = q  -1 CASE 

2.1. F ini te-Latt ice Calculat ions 

In this section we give the full solution of the coagulation model with 
particle input at the boundaries. We use the IPD F  formalism c3~ in which 
the whole problem is formulated in terms of probabilities for finding 
sequences of unoccupied sites (holes). In this basis the master equation 
leads to a hierarchy of sets of equations according the number of holes. It 
is known ts~ that these sets decouple from the higher ones provided that the 
rates for diffusion and coagulation coincide. Therefore the one-hole sector 
decouples from the higher sectors and can be solved separately. In what 
follows we will assume that the above condition holds. 

For  completeness we will consider the model with input at the left end 
(rate Pz_) and right end (rate pR). 3 We will actually show that by solving 
the problem with p R = 0  one can obtain the general solution pR-~0. 
Although in principle feasible, we did not look at the case when one also 
has output of particles at both ends. 

Although not obviously needed for the study of the stationary state, 
we will also give the spectrum of the problem in the one-hole sector for two 
reasons. One is technical: the eigenfunctions and eigenvalues occur in the 
expression of the stationary-state hole probabilities. The second one is 
related to the physical significance of our result: it is important to know 
when one has massless or massive excitations. 

Let D(j,m, t) denote the probability to find the sites j +  1 , j + 2  ..... m 
empty at time t. By a careful analysis of the elementary processes taking 
place at the edges of the hole one is led to the following equations of 
motion for the one-hole sector: 

In order to avoid confusion in terminology we give in parentheses alternative usages in the 
literature: periodic boundary conditions (model on a ringl, open boundary conditions 
(linear chain with closed ends), open boundary with particle input Ichain with open ends). 
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�9 For holes which do not touch the boundaries (0 < j < m  <L) :  

d 
dt [2(j' m, t) = q[2 ( j -  1, m, t) + q t[2(j + 1, in, t) 

+ qO(j, m - 1, t) + q-~O(j,  m + 1, t) 

- 2 ( q  + q  - t )  [2(j, m, t) (2.1) 

�9 For holes touching the left boundary (0 = j < m  < L): 

d 
dt [2(0, m, t) = qO(O, n7 - 1, t) + q-tO(O, in + 1, t) 

- ( q + q - t  +PL)[2(0, m, t) (2.2) 

�9 For holes touching the right boundary (0 < j < m  =L) :  

d 
~ [ 2 ( j , L , t ) = q [ 2 ( j - l , L , t ) + q  t[2(j+ l , L , t )  

_ (q + q - t  +PR)  s L, t) (2.3) 

�9 For the hole extending over the whole chain ( j = 0 ,  m =L) :  

d 
--~ [2(0, L, t )= --(PL-b pR) [2(0, L, t) (2.4) 

In these equations we have taken [2 ( j , j , t )= l .  This leads to an 
inhomogeneous system of equations. Separating the time dependence and 
introducing rescaled probabilities 

[2(j, m, t)=e-"q+i+"'~2(j ,  m) (2.5) 

we obtain the simplified system of equations 

(2 (q+q  J ) - - A ) ~ ( j , m ) = ~ ( j - l , m ) + ~ ( j + l , m )  

+ ~ ( j , m - 1 ) + ~ 2 ( j , m + l )  (2.6) 

( q + q - ~ + p c - - A ) s 1 6 3  (2.7) 

( q + q - ' + p R - A ) s 1 6 3  (2.8) 

(Pc +PR -- A )/2(0, L) = 0 (2.9) 

which the inhomogeneous boundary condition O(j, j ) =  q-'-J. 
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The homogeneous set of solutions describes the relaxational modes of 
the system. It is obtained by setting ~( j ,  j )  = 0 and can be computed easily 
by using similar techniques as in ref. 9, which rely mainly on the invariance 
of the bulk equation (2. I ) under reflections j ,--, m and j *-~ L - in. Denoting 

s inh[ j  arcsinh �89 + q - '  - z)] 
g(j, z) = s inh[L arcsinh �89 + q - i  _ z)] (2.10) 

we find the homogeneous solutions 

r  pL)g(m,  p R ) - - g ( L - - m ,  pt . )g( j ,  pR) (2.11) 

, . rckj , ,  rckm 
~L~(j,  m} = s m  ----~- gt L --In,  P L) -- sin ---~- g( L --j, P L) (2.12) 

~zkj rrkm 
~R, ( j ,  m) = sin ---~- g(m, PR) -- sin ---ff-- g(j,  P R) (2.13) 

rckj rtlm 7~km. rdj 
#,.t(J, m) = sin T sin T - sin T sm -~- (2.14) 

They have the excitation energies 

A o = p L  +pR (2.15) 

nk 
A~Cl = q + q - I  +PL -- 2 cos - -  (2.16) 

L 

nk 
A~.R) = q + q - l  + P n - -  2 cos ~ (2.17) 

~zk ~zl 
Ak./= 2(q + q - t )  - -2  cos -~-- -- 2 cos (2.18) 

where 1 ~< k < l~< L. In contrast to the coagulation model without particle 
input (Pn =PL = 0), where the spectrum is massless for q = 1 and massive 
otherwise (q real), in the case of particle input the spectrum is more 
complex. Even for q =  1, where most of the excitations are massless 
[Eq. (2.18)], we get some massive ones, too [Eqs. (2.15)-(2.17)]. 

The derivation of the inhomogeneous (steady-state) solution is more 
difficult. For  symmetric coagulation on a ring with infinite particle input at 
a single site an exact solution has been found recently in refs. 11 and 12. 
This solution applies to an open chain with symmetric diffusion (q = 1 ) and 
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infinite particle input at both ends ( p z = p R  = c~). It is given by ~ ( j , j ) =  1 
and 

8 L - I '  

~(J '  m) =~2  k.t~ l 

. irk r t l[ ' ,  rck j .  Mm 7rkm.  7rlj'~ 
sin -~- sin sin T - sin ts,n ~-- --Z-s,n T )  

cos L -  cos L / \  - cos ~ - -  cos  

( j < m )  (2.19) 

where the prime indicates that the sum runs only over even values of k and 
odd values of L Formally this solution can be expressed in terms of the 
two-particle excitations (2.14) by 

8 ~ '  fk.tCI)k.l(j, m) 
~(J '  m) =~-- ,./=, Ak.t (2.20) 

where 

1 (_)A-+I] sinOzk/L)sin(rd/L) 
f,..i = "~ [ 1 -- cos(rd/L ) -- cos(rck/L) (2.21) 

plays the role of a structure function. However, we proved that the general 
stationary solution for the asymmetric diffusion and finite particle input 
rates has the same structure and differs only in the structure function fk./. 
This function can be derived as follows. Let us symbolize a contraction 
of two functions over momentum indices k, l by ( . ,  -)k. /and similarly a 
contraction over spatial indices by ( . , . )z , , , .  Then Eq. (2.20) reads ~ = 
( f , ~ / A ) k . ~  and therefore the application of the discrete Laplacian 
A ~ = A q ~  yields A ~ =  ( f ,  ~)k.~, which is zero everywhere except at the 
boundaries. Using the orthogonality relation (#~..~, #k'.r).i.,,,~6k.k'~t.r, 
one can therefore compute f by 

f ~  ( f ,  6~)k.,'-, ( f ,  (~ ,  ~)i.,,,)k t~  ( ( f ,  ~)k.t, ~)/.,,, ~ (A~,  ~).i.,- 
(2.22) 

Carrying out these contractions, it turns out that the structure function f 
consists of three parts 

f k  - -  r '~(~ I L l  I R )  . I - Jk . /  + f k . / + f k . t  (2.23) 
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The first part f~..~'i ~ describes the asymmetric coagulation model with infinite 
particle input rates at both ends. It is given by 

f l , s_)  _ _ ) k + l  k./ = [ 1 - (  q-2t.] 

+ Z____J) . . ( k -  Z_____) 
( q + q - n ) _ , s i n ~ s i n ~ s i n  2L sin 2L 

x (2.24) 
(q2 +q 2 _ _ 2 C O S ~ ) ( q 2  +q-2__2COSrC(k_L_--" ) 

For q ~ 1 (symmetric diffusion) this expression reduces to Eq. (2.21). The 
other two parts depend on the input rates Pt_,PR and read 

sm ~-  sm -~ cos -~ -- cos 
f t L )  k./ = (2.25) 

2 q+q-~+pL-2cos-~  q+q-  + p c - 2 c o s - ~  

�9 xk rtl cos - ~ -  cos (_)k+1+1 q-2L sm _~_ sin ~_ 
d['l R ) k./ = (2.26) 

2 q+q-~+pR--2cos---~ q+q + p R - - 2 c o s  

The inhomogeneous solution of the difference equations (2.6)-(2.9) is then 
obtained by inserting Eq. (2.23) into Eq. (2.20). 

For a fixed value of the lattice length L the hole probability function 
depends on three parameters: Pc, PR, and q. By reversing the ends of the 
lattice, one sees that 

g2(j,m, pL,pR, q)=O(L--m+ l ,L-- j+ l,pR,pL, q -I) (2.27) 

Due to (2.23), the hole probability function obeys the rule 

I2(j, m, pc,pg, q) 

=t'2(j, m, pL, O, q) + g2(L-m + 1, L - j +  1,pR, 0, q - J )  

-12(j,m, O, O, q) (2.28) 

Therefore it will be sufficient to study systems with particle input at only 
one boundary. Using (2.28), one can relate physical quantities referring to 
systems with particle input at both ends with the ones computed for 
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systems for which Pz_ or PR is 0. As an example, the particle concentration 
at site j 

c(j) = 1 - O ( j -  1, j) (2.29) 

can be written as a sum (2.28): 

c(j, pt_,pR, q)=c( j ,  pt_, O, q ) + c ( L - j +  1,pR, O, q-I) 

-- c(j, O, O, q) (2.30) 

Here c(j, 0, 0, q) is the particle concentration in the stationary state for 
input rates 0, i.e., it is the particle concentration of one random walker 
occupying the whole lattice (2.74). 

2.2. The Thermodynamic Limit 

The formulas derived in the last section are exact solutions for finite 
chains. We consider the thermodynamic limit. In this limit the right bound- 
ary is moved to infinity while the observer stays at a fixed distance j from 
the left boundary. We consider systems with no particle input at the right 
end (PR = 0). We are left with only two parameters, namely the input rate 
at the left boundary p - p L  and the asymmetry parameter q. Carrying out 
the limit L ~  in Eqs. (2.23)-(2.26), one is led to a simple integral 
representation of the one-hole probabilities O(j ,m).  To this end it is 
convenient to introduce the quantities p__, 

p_-=~ q + q - t - i z ) - x / � 8 8  ' - i z ) 2 - 1  (2.31) 

and its inverse 

p;f' ' iz) +~/~(q iz) 2 1 =_~(q + q  ~_ + q - l _  _ (2.32) 

Using this notation, we express the one-hole probabilities in the thermo- 
dynamic limit by the elliptic integral 

-) ": i m m j = (p_p _ : - , u :  ,u-_:) (2.33) Q(j ,m)  1-~f -x i  _~_ dz , +p,. 

A proof of this formula is given in Appendix A, where also the particle 
concentration at the first few sites for infinite input rate is computed 
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exactly. Let us now investigate the asymptotic behavior of the particle 
concentration 

I , c(J)=~12niq _.~, dz(q~-it:it-:)i z - ~ 5  I t : - p _ :  (2.34) 

log(q-'it__it __-) = _ q 2  _ _  

Rewriting the integral (2.34) by 

q 2 + l  
( q 2  1)3 z 2 -  O(z4) (2.39) 

l _ ~ _ I + * d z e x p ( _ q 2  q 2+1 ., '~ c ( j )  = 2niq - ,  , (q-~7 [)3JZ-; s(j, z) (2.40) 

s ( j , z ) = e x p ( q  ~- q 2+1 . 2~{'1 - ) 
jz / \7  

x (q2it_it _:)i (it j ,  _11 -~) (2.41) 

for large j. Three cases have to be considered separately: 

2.2.1. S y m m e t r i c  Case  ( q =  1}. For q = l  the expression 
log(it_it ___) in Eq. (2.34) can be expanded in first order by 

log(it_.it _-) = --V/-2 Izl + O(z 3/2) (2.35) 

Rewriting the integral (2.34) by 

c(j) = 1  1 +"- dz e x p ( - , / 2  Izlj) r(j, z) (2.36) 
2hi _ ,  

r( j ,z)=exp(v/~lzlJ)(i t ._i t_:)j  z2+ (it_t ) (2.37) 

and expanding r(j, z) in z, we can solve the integral order by order. We 
obtain the series 

(3 2 1 1 ~ =P-/J" c ( j ) = ~ - t  gj2 2nj~ + - -  - - - - : + O ( j  -6)  (2.38) 

This proves that in the fermionic case the first three terms in the large-x 
expansion are independent of the input rate p. 

2.2.2. Bias to  the  Right { q > l ) .  In this case we find that the 
expression log(q-'it:it __) in Eq. (2.34) can be expanded in first order by 
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and expanding s(j, z) in z, we can again solve the integral order by order. 
We obtain 

/ q --1 [ 
c(j) = ,4(q 2 + 1) ~j 

+ O(j -5:'-) 

//3q4+20q2_- 1 !q2~ 1)3 ~1] 
1 + \  8(q~_ 1 ~ 2q_(q_+l)p2j ) 

( 2.42 ) 

We notice that, as opposed to the symmetric case, only the leading term is 
independent of the input rate. 

2.2.3. Bias to  t h e  Left  q < 1. If the particles hop preferentially to 
the left, they accumulate at the left boundary and thus we expect an 
exponential decay of the concentration profile. In fact, as can be seen from 
Eq.(2.34), the expression q2i-~c(j) is invariant under the replacement 
q--* q ~. This means that for a bias directed toward the left boundary the 
concentration profile decays like q4i/'-1,2: 

1 O(j 3/2)) (2.43) c(j)=q"( .__q2 
W(q-+ 1)~) + 

We remark that the series presented in this section are asymptotic 
series since they are derived from an elliptic integral. 

2.3. The  C o n t i n u u m  Limit  

An alternative way to describe the physics of the coagulation model 
with an external input source is to consider the continuum limit of the one- 
hole equations. This can be done by taking the lattice spacing 2 ~ 0 while 
keeping the two quantities 

pL 2(q-q t) and /~ (2.44) 
P = 2 ( q + q  -~) - 2 2 ( q + q  -~) 

constant. We then replace the empty-hole probabilities g2(x,y) by their 
continuous counterparts: 

(2.45) 

It is useful to rescale the hole density function taking ~(x, y)=-Q"(x, y) 
exp[--�89 which satisfies the equation [see Eq. (2.6)] 

(d--�89 (L>y>x>O) (2.46) 
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By solving the continuous counterparts of Eqs. (2.2)-(2.4), we determined 
the value of the hole density function on the boundaries. The solutions are: 

�9 Along the left boundary (x =0 ,  0 ~<y ~< L): 

f f 2 ( O , y ) = ( s i n h [ ( L - Y ) ~  t~4+P] if / ~ : ~  (2.47) 

�9 Along the upper boundary (y = L, 0 ~< x ~< L): 

I [  exp( - f'L ) ] sinh( �89 Px) 
t~(x, L ) =  sinh(�89 if P # 0  

~.x/L if P = 0 

(2.48) 

�9 On the diagonal (0 ~<x = y  ~<L) the normalization condition is 

~(x,  x) = exp ( -Px)  (2.49) 

Equation (2.46) together with the boundary conditions (2.47)-(2.49) define 
a Dirichlet problem for the function O(x, y). The formal solution is 

)0__ , ,  
(}(x, y) = ds ~(x',  y ~9(x, y, x ,  y ) 

(" On 
(2.50) 

where C is the contour along the boundaries, O/On is the normal derivative, 
and (#(x, y, x', y') is the Green function defined by 

(A -- �89 C~(x, y, x', y') =6(x--  x') ~(y-- y') (2.51) 

aJ(0, y, x', y') = eft(x, y, 0, y )  = ~(x, L, x', y') 

= N(x, y, x', L) ---0 (2.52) 

~#(x, x, x', y') = fq(x, y, x', x') =0 (2.53) 

The computation of the density function of the hole probabilities requires 
the computation of the Green function. This is done in two steps. First 
notice that 

CS(x,y ,x ' ,y ' )=fgD(x,y ,x ' ,y ' ) - f# tz(y ,x ,x ' ,y ' )  (2.54) 

where fr y, x', y') is the Green function of the Dirichlet problem defined 
in the interior of the square O<~x<~L, O<~y<~L. One can construct G D 
easily by using reflection techniques. All that one needs to know is the 
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Green function of the Dirichlet problem defined on the entire plane (with 
boundaries at infinity). We denote the last-mentioned function with 
g( x, y, x', y' ). Summing up, we get 

f g ( x , y , x ' , y ) =  ~. o~fl ~ [ g ( x / ( x - - 2 i L - - o ~ x ' ) 2 + ( y - - 2 j L - - f y ' )  z) 
~ . [ ~  = +_ I i . j  = - . i_ 

- -g(x / (Y  -- 2iL - oc'r z + (x - 2jL - fly' )2)] (2.55) 

Once the density function ~(x, y) is known, one can compute expectation 
values of observables in the steady state. The local particle density is given 
by 

lim 1 -- {exP{�89 ~ ( x , y )  Og2, .(x,y  ) p(x) (2.56) 
y - x y - -  x O V .  . V=A" 

We also give a closed formula for the computation of the connected two- 
point function: 

G"(x, y) = (n,.n.,.) - (n.,.) (n, . )  (2.57) 

Here n,  denotes the particle number operator at site x. Using the factoriza- 
tion properties of the two-hole probability function mentioned in refs. 10 
and 11, it is easy see to that in the continuum limit we have 

O 
G"(x, y) = . t2"(x, y) ~ t2'(x, y) - t2"(x, y) 

02t?"(x, y) 

Ox Oy 
(2.58) 

2.3.1. The Scaling Limit  in the Symmetr ic  Case ( q =  1). In 
the case of symmetric diffusion the differential equation (2.46) reduces to a 
Laplace equation. The Green function can be obtained from (2.55) by 
replacing g(u) with (1/2n) In u. 

Let us consider for simplicity first the case of an infinite particle h~put 
rate (/~ = ~ ). In this case the hole density function is zero for x = 0 [see 
Eq. (2.47)]. ,We are left with 

O"~(x,y)= du f~(x,y,.x , y )  
) .1" = t t  

i j- x ' 0  ] - d x ' z ~ x ' f g ( x ' y ' x " Y ' )  .,.' = L (2.59) 

822~86, 5-6-21 
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Inserting Eq. (2.55), one is led to 

s 

= Y .  

a.fl= • 

+~- { ot(2i--x/L)--fl(2j--y/L) 
x ~, arctan(2i_x/L)2+(2j_y/L)2+o~(2i_x/L)+fl (2j_y/L ) 

i , j =  --oz- 

_ [ f l ( i _ ~ L ) + e ~ ( j _ ~ L )  1 . ~ + 2 i - x / L ]  arctan fl + 2j - y / L ~  (2.60) 

We see that the hole density function for/9 = c~ depends only on x/L and 
y/L. From Eq. (2.56) we obtain the local particle density in the stationary 
state for infinite particle input rate: 

2 ~-  (x/L -- 2i) + (x/L -- 2j) 
p<(x) = -~  (x/L - -  2i) 2 + (x/L - -  2j) 2 

i . j =  --c,: 

Defining z =x/L, we can rewrite Eq. (2.61) as 

(2.61) 

Lp~(x) = ~(z) (2.62) 

where 

1 +~'- (z /2 - i) + (z /2 - j )  
~)( z ) = -  

7~ i , j =  - - ~  

sinh(nz) + sin(nz) 

cosh(nz)-cos(n_~) 

+~-5" ~ sinh[ 2n(z/2 - k ) ]  + sin(nz) + 
k ~,.= (cosh[2n(z/2 - k)] - cos(nz) 

+(k,--,  - k ) }  (2.63) 

The function ~(z), called the scaling function, is odd and periodic with 
period 2. In the limit z--, 0 the function diverges like 2/nz [ the dominant 
contribution is given by the first term in the second line of (2.63)]. For 
z -~ 1, ~(z) approaches the value 1, but the value itself at the point z = 1 
is ~( 1 ) =  0. So the function is discontinuous for all integer arguments. 

We consider now the case of an arbitrary input rate t3 and look at 
the scaling regime (z fixed, L ~  m). If/9 is finite, one picks up another 
contribution to the hole density function coming from the integration along 
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the boundary segment (x=0 ,  0 ~<y ~< L) in (2.50). The difference between 
the values of the hole density function corresponding to infinite and finite 
input rates is 

O'~ , (x ,y )  -- O ; ( x , y ) = ~ ] ' d y ' O ; ( O ,  Y ' ) O ~ N ( x ' y ' x " Y ' ) O x '  x,=o (2.64) 

We are here interested in the scaling and thermodynamic limit. For large 
values of the lattice length L, g2p(0, y ' )  behaves like exp[-y'(/~)~/2]. We 
expand the derivative of the Green function in Eq. (2.64) near y ' =  0 and 
get 

c_ ..Qc I2~,(x, y) - ~(x, y) 

16 ~-X" ( x / L - - 2 i ) ( y / L - - 2 j ) [ ( y / L - 2 j ) Z - ( x / L - 2 i )  ~-] 
re ~,J l.. . . . .  [ ( y / L _ 2 j ) 2  + ( x / L _ 2 i ) 2 ] 4  

i~ sinh[(p) ~/2 L(1 - u)] 
x sinh[ (/~) I/2 L] (u3 + O(uT)) du 

It is easy to see that in the finite-size scaling limit one gets 

r r + ~  ~ .... (z)+O(-~) (2.65) 

The first finite-size scaling correction function is 

7['fi2 i , j =  --ct2 

(z/2 -- i)" -- 10(z/2 -- 02 (z/2 _j)2 + 5(z/2 _j)4 
X 

[ (z/2 -- i) 2 + (z/2 - j )  2 ] 5 (2.66) 

So we proved that in the scaling limit the particle density function scales. 
The scaling function ~(z) given by Eq. (2.63) is independent of the input 
rate. We get finite-size corrections of order L-4 for finite input rates. 

In Fig. 2 we show the function (solid curve) 

F(z )  = 2 ~ ( z )  (2.67) 

[with this definition F(0)= 1] together with finite-lattice calculations [see 
Eqs. (2.29) and (2.20)] obtained for L=2000 ( p = l )  and for L--800 
(p = o~). We have given this figure for two reasons. First we observe that 
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Fig. 2. 
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The function F(z) defined by Eq. 12.67) [solid curve) compared to lattice calct, lations 
for L = 2 0 0 0 ( p = l . 0 )  and L = 8 0 0 1 p = ~ ) .  

the scaling function has a nontrivial behavior at the opened end of the 
system (z oc 1). Next, although the scaling function was computed in the 
continuum limit, it applies to the lattice, too. 

Let us consider the thermodynamic limit L ~  co, x fixed. Using 
Eqs. (2.56) and (2.55) (from the multiple sum of the latter we take only 
the terms corresponding to i = j = 0 ) ,  one can show that 

2 12 5040 
p ( x )  = ~ O ( p - 6 x  - ~3) (2.68) 

~x @2xS+@*x ~+ 

The asymptotic behavior (for large values of x) of the one-point function 
in the thermodynamic limit (2.68) can be also obtained from the scaling 
behavior (2.65) in the limit z ~  0. The result (2.68) is consistent with the 
expansion for the stationary concentration profile on a discrete lattice 
(2.38). The only difference is that in the continuum limit all contributions 
1/x~p J with i > 2j + 1 scale like 2 ~- -'J- ~ and therefore vanish in the limit of 
vanishing lattice spacing 2 ~ 0. 

We mention one last result concerning the connected two-point func- 
tion. In the thermodynamic limit one can see ~ j  that the hole probability 
density for infinite input rate is 

4 (x) 
[2';~_(x, y)=-~ arctan Y (2.69) 
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Using (2.58), one gets the following expression for the connected two- 
point-function: 

16 1 1 +v-v(2+v)arc tan[1 / (1  +v)]  
G ' ( x , x + d ) -  zc2x 2 (2+2v+v2)2 (2.70) 

in the infinite-input-rate case. On the right-hand side of (2.70) we denoted 
d/x with v. Notice again the algebraic falloff. 

2.3.2. Bias to  t h e  Right  ( ~ > 0 ) .  Writing the Fourier transform 
of (2.51), one gets 

- e i~- . . . . .  "dO ( 2 . 7 1 )  g(u) (2~) 2 , k2 +1~2/2 , 

Thus the Green function of the problem defined on the entire plane is [see 
formulas (9.6.16) in ref. 13 and (6.532.4) in ref. 14] 

g ( u ) = -  2~ Ko ( x / ~  u) (2.72) 

We use the standard notation Ki, i = 0, 1,2 ..... for the modified Bessel functions. 
In Appendix B we prove that in the thermodynamic limit the 

asymptotic behavior of the particle density is given by 

G 1 (11 f'~'~ 1 5/2) p(x) = +--4 x / ~  \-~---~-Sj ~ +  O(x-  (2.73) 

The leading term is the continuum analogue of the one appearing in 
Eq. (2.42) and is independent of the input rate. 

We conclude this section with some remarks concerning the influence 
of the right boundary on the particle density. 

As opposed to the symmetric case, one can check that for biased diffu- 
sion to the right the behavior of the one-point function in the thermo- 
dynamic limit is identical with the one in the scaling limit. One can give a 
qualitative explanation. In the stationary state, near the right boundary, 
the density function can be approximated by the one given by a single 
particle occupying the whole lattice (a random walker) 

Iq -2.,. 1--q -2 for q-el  
1--q _,L 

c(y) = (2.74) 

l 1 for q = l  

where y = L -- x. 
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For biased diffusion to the right the density decays exponentially in y. 
So the influence of the right boundary is of short range and is not seen in 
the scaling limit. 

For  q =  1 (or P=0 )  the influence of the right boundary is much 
stronger. The density determined by a random walker near the right end of 
the lattice is constant ( l /L)  and greater than the one obtained through the 
extrapolation of Eq. (2.38), 2/rcL. This explains the linear behavior of the 
reduced scaling function F(z) for z--* 1 (see Fig. 2). 

One can also notice from the y and L dependence of c(y) that one has 
a characteristic length scale A = (2 In q)-~, which is related to the inverse 
mass seen in the spectrum of the Hamiltonian [see Eq.(2.18)].  This 
observation is very interesting, since it clarifies a puzzle which goes through 
this paper: how can a system with massive excitations in the time direction 
show an algebraic and, as we shall see in the next section, universal 
behavior? The answer is that one looks at the concentration in the "wrong" 
way following the x dependence (away from the source) and not the y 
dependence (away from the open end). The discovery that this "wrong" 
way exists is probably the main achievement of this paper. 

3. NUMERICAL VERIFICATION OF THE 
UNIVERSALITY HYPOTHESIS 

In this section we present the results of Monte Carlo simulations. The 
details are given in Appendix C. We restrict the study to cases for which 
p R = 0  and r~>0. We start with the symmetric diffusion case ( q =  1 or 
r = 0 ) .  First we look at the density profile (1 ~ x ~ L ) .  As suggested by 
Eq. (2.38), we fit the data by the function 

c(x)=~-+K2 + K~ 
. x -  ~ ( 3 . 1 )  

When making the fits (by using the Z 2 method), we took points 
xe[L/lO, L/2] in order to avoid finite-size effects. The estimates for Kt 
and K, for various input and bulk rates are given in Table I. The data 
presented here were obtained taking lattices of size L = 1000. 

We notice that K~ is everywhere close to the value obtained in the 
fermionic case (s = 2, t = 0), namely K t = 2/n "~ 0.637. The values of K2 are 
different if the bulk rates are different, but as in the fermionic case, they do 
not depend on the input rate. 

Since the leading term of the density profile is compatible with univer- 
sality, one can go one step further and check if the scaling function ~(z)  
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Table I. Estimates of the Coeff icients K 1 and K 2 of the Expression (3.1) for 
Various Input and Bulk Rates 

s t p K I K, 

0.50 0 I 0.635 + 0.001 10.2 + 0.2 
0.50 0 7:_ 0.639 + 0.004 9.8 __+ 0,8 
0.50 - 0 . 2  1 0.640 + 0.010 16 _+ 5 
0.50 - 0 . 2  w. 0.640 + 0.010 13 + 3 
0.25 0 1 0.637 + 0.002 22 + 4 
0.25 0 ~ 0.632 + 0.002 24.4 __+ 0.4 
0.40 - 0 . 2  1 0.638 _+ 0.002 I 1 + 2 
0.40 - 0.2 -~ 0.642 + 0.004 10.4 __+ 0.6 

given by Eq. (2.63) in the fermionic case is also universal. This function was 
obtained taking x / L  = z fixed (x and L large): 

lim Lc(z ,  L) = ~(z) (3.2) 

We define the function 

Lc(=, L) 
K(z,L) 1 (3.3) 

r 

N 

: o -  

0 . 3  = e -  

-o--  

--o- 

0 . 2  

0 . 1  

0.0 

0 . 0  

i i i 

L = 200 

~- L = 1ooo 

-c- 

.o 
--r 

-,- ~-,-+. §  -4-+_4_-+-+++ +_+-+-~ 

r i I i i t 

0 . 5  
t 

. 0  

Fig. 3. The L dependence  of  the K(-, L) function defined by Eq. (3.3) for p =  1.0, s=0.5 ,  
r =  t = 0. If the scaling function is universal, K(-, L) should wmish in the thermodynanaic  limit. 
Monte Carlo simulations. 
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which measures the deviation from universality and the finite-size effects. In 
Fig. 3 we give the data in the case p = l, s = 0.5, t = 0 for three lattice sizes. 
One notices that with increasing lattice size, K(z, L) decreases, as it should. 
One should mention that for z = 0 ,  K(z, L) has to go to zero in the limit 
L---> c~ because of the universality of K~ in Eq.(3.1) and the uniform 
convergence of ~(z),  as proven in the fermionic case. Thus the relatively 
large values of K(z, L) observable in Fig. 3 for small values of z should not 
be a subject of concern. We have also done other simulations (not shown 
in Fig. 3) for other input rates, which show the same pattern. 

In Fig. 4, K(z, L) is shown for various input and coagulation rates for 
a lattice of length L = 1000. As one can see, K(z, L) is small everywhere 
(for small values of z the convergence is slow, but, as mentioned above, for 
z = 0 universality was checked already). 

We now consider the asymmetric diffusion case (q > 1). As suggested 
by Eq. (2.42), we fit the Monte Carlo data by the function 

c(x) = K' I 2x-  1,2 ..1_ K'l x - i  + K~,2x-  3.2 (3.4) 

We choose q = ~ / / 2 s  (which corresponds to r=0.857) ,  in which case 
we get from Eq.(2.42) K'~,_,=V/3-/(7n)~0.369. Notice that we have 
allowed a term ~ x - '  not present in Eq. (2.42). The data were collected for 
L = 1000 and the results are shown in Table II. 

Fig. 4. 
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The K(:, L) function for L= 1000. r=0, and different input and coagulation rates. 
Monte Carlo simulations. 
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Table II. Coeff icients K'~/2 and K' 1 of the Expansion (3.4) for Various Input and 
Coagulation Rates" 

s t p K'l 2 K'l 

1.000 0.429 I 0.370 +_ 0.003 0.10 +_ 0.01 
1.000 0.429 7- 0.368 +_ 0.002 0.1 I _+ 0.01 

0.500 0.214 1 0.368 _+ 0.003 0.90 + 0.04 
0.500 0.214 7_ 0.369 _+ 0.004 0.82 +_ 0.07 

0.250 0.107 1 0.369 _+ 0.002 2.12 _+ 0.02 

0.250 O. 107 ~_ 0.369 __+ 0.0(12 2.09 + 0.02 

0.361 - O. 181 I 0.368 __+ 0.001 1.27 + 0.02 

0.361 -- O. 181 7~ 0.369 + 0.003 1.25 + 0.04 

" All da ta  are Ibr q = , , ~  ( r=0 .857} .  

As can be seen from this table, the coefficient K',,2 is unchanged (univer- 
sal). The K'~ is independent of the input, but depends on the bulk rates 
[similar to the K, coefficient in Eq. (3.1)]. Finally we notice that the values 
of K', get smaller if we approach the fermionic case (1"= t = 0.857, s = 2). 

To sum up, in the symmetric diffusion case the Monte Carlo data 
suggest that the large-x behavior and the scaling function are universal: 
they are independent of the cL, ca, and p rates. In the asymmetric diffusion 
case, the large-x behavior is also universal. 

4. C O N N E C T I O N  WITH OTHER MODELS 

It is well known that the coagulation model A + A  ~ A  and the 
annihilation model A + A --* ~ belong to the same universality class. This 
equivalence is due to the existence of a local similarity transformation 
between their time evolution operators.' '-~' We now use this transformation 
in order to apply the results of the preceding sections to a coagulation- 
annihilation model (called CA) with boundary effects, which is defined by 
the following processes and rates: 

A ~  --, @A 

A A  --* ~ A  

A A  ~ A ( ~  

A A  ~ ( ~  

diffusion to the right at rate OR 

diffusion to the left at rate OL 

coagulation to the right at rate ?R 

coagulation to the left at rate ?L 

pair annihilation at rate 17 
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In addition, particles are absorbed (desorbed) at rate f (3) at the left 
boundary. In the configuration basis the time evolution operator HCA= 

L - -  1 (-'A l~l "A q- ~ , ,  = I H ,,.,, + I is given by ( oo 
CA aL --fin --?R 

H ..... +l = --ac aR - -ac  ' 

0 0 f f + g R + ? L /  

7) '4.'' 

As shown in ref. 15, the coagulation model (1.3) and the generalized 
annihilation model (4.1) are related by a local similarity transformation 
HC'A = U H C o a g u  t 

U = u | 1 7 4  . . .  |  | ,,--('0 ':") 
where a is some parameter. The rates of the coagulation-annihilation 
model are related to those of the original coagulation model by 

a L . R ~ L I L .  R 

l - - a  
g c . n = c l _ . t e +  - ( a n . z . - - a c . n - - c l r  a 

| r o d  
~ =  (CL + C R )  (4.3) 

a 

~ = a p  

3 = ( 1  - a ) p  

Notice that if the original model had only input of particles, the equivalent 
coagulation-annihilation model has both input and output of particles. 
Because of the simplicity of the transformation, the n-point density-density 
correlation functions in the coagulation and coagulation-annihilation 
model are related by 

T/I T/2 C'A n c o a g  �9 �9 �9 r/,,) = a  (ri ,  ri2 �9 �9 �9 ri,,) (4.4) 

5. C O N C L U S I O N S  

In the present paper we investigated the coagulation-diffusion model 
with particle input at one boundary using both analytical and numerical 
methods. The results show that spatial long-range correlations play an 
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essential role and that some physical properties are universal with respect 
to the input and the coagulation rates. 

We started our analysis with a simple space-dependent mean-field 
approximation. It predicts algebraic behavior of the particle density in the 
stationary state for both symmetric and biased diffusion. However, rigorous 
results require an exact solution of the problem. To this end we solved the full 
problem by using the IPDF  formalism. This formalism can be used only if the 
coagulation and diffusion rates coincide, a case which corresponds to free fer- 
mions in the Hamiltonian language. The large-x behavior (x is the distance 
to the source l of the particle density was computed in the thermodynamic 
limit both for the lattice and the continuum version and the results were com- 
pared. These painful calculations were done for symmetric and asymmetric 
difti~sion. In the case of symmetric diffusion the scaling limit (x/L fixed, L is 
the lattice length) was obtained. 

Monte Carlo simulations show that the coefficients of the leading terms 
of the asymptotic expansion of the density in the thermodynamic limit are 
universal: they are independent of the input rates (this was to be expected 
from mean-field) and on the coagulation rates. The scaling function is also 
universal in the symmetric case. It is trivial in the asymmetric case (it coin- 
cides with the leading term of the large-x behavior of the density). These 
results were to be expected from common sense in the symmetric case, but 
not for the asymmetric case. The reason is the following: the relaxation 
spectrum of the system is massless in the first, but massive in the second case. 
There exists a myth according to which if there are lengths in the time evolu- 
tion, there should be lengths in the space correlations. A counterexample can 
be found, however, in the kinetic Ising model. ~a~ In the coagulation-diffusion 
model the picture is more perverse: if one looks at the concentration starting 
at the opened end, one finds an exponential falloff, but an algebraic and 
universal behavior if we start at the source end. 

The message of this paper can be extended to the problem in which we 
add pair annihilation in the bulk and an output of particles at the source. 
What is still missing is a proof of universality which goes beyond numerical 
checks. This can be done using field-theoretic methods fl la Cardy. ~'~7~ 

APPENDIX A. PROOF OF THE SOLUTION IN THE 
T H E R M O D Y N A M I C  LIMIT 

In this appendix we prove the integral representation for the one-hole 
probabilities in the thermodynamic limit (2.33): 

~?(x, 3') = 1 - ~ d:  __, p_~ (#-'-#-' - . . . .  - # ~ # ' i  -) (A.1) 
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Instead of deriving this formula from the finite-size solutions (2.24)-(2.26) by 
taking L---, co, it is much simpler to prove that Eq. (A.I) is a solution of the 
one-hole equations (2.1)-(2.4). We first notice that s x) = 1 because of 
the antisymmetry of the integrand. In order to verify the bulk equation 
(2.1t, let us introduce the notation g(x,y,z)=q"+-"(/~~p-L__--lL-'__lt"~__). 
Using Eq. (2.31), one can show that 

q g ( x - l , y , z ) + q  I g ( x + l , y , z ) + q g ( x , y - l ,  z j + q  I g ( x , y + l , z )  

= 2 ( q + q  ~ ) g ( x , y , z )  (A.2) 

This relation implies that Eq. (A.1) satisfies the bulk equation (2.1). The 
last step is to verify the left boundary condition (2.2). Obviously it is 
equivalent to proving that 

h(y)  = qs y - 1 ) + q ts y + 1 ) - (q + q - ~ + p) s y) 

' 

- -  z - i p /  (A.3) 

is equal to zero for all y = 1, 2 ..... Go. For  y = 0 we get 

p 2 f +  2 1 h(0) = - p  +-3- ,4_- z2 +P-" = 0  (A.4) 

For y = 1 one has to solve the integrals 

d_/&-+ . :  h(1) = - p  + ~ z 2 + p 2  
- p  ___) 

(A.5) 

by standard integration techniques in the complex plane. It turns out that 
all contributions cancel except at z = 0  in the second integral, so that 
h(l)  =0.  Using Eq. (2.31), it is now easy to derive the recurrence relation 

q - ~ h ( y ) + q h ( y - 2 ) = ( q + q  t ) h ( y - 1 )  (A.6) 

so that h() , )= 0 for y = 2, 3 ..... co follows by induction. This completes the 
proof of Eq. (A.1). 

Let us finally consider the case of infinite input rate, where Eq. (A.1) 
reduces to 

q-"+"f+ ' -  dz lz --lL_-lt__-) g2(x, y) = 1 2~zi -, z (lv': 2: " " (A.7) 
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This expression turns out to be a combinat ion  of elliptic integrals. This 
allows us to compute  the particle concentra t ion exactly, al though the 
expressions become very complicated as x and y increase. For  example, the 
particle concentra t ion in the steady state at the first four sites is given by 

c ( l ) =  1 (A.8) 

9 
m 

c(2 ) = - ~  [ (q'- + 1 )( 1 + 6q 2 + q4 ) E - (q2 + 1 )(q2 _ I )2 K ] - q'- - 2q 4 ( A.9 ) 

2 
c ( 3 ) = 1 ~  [ ( q 2 +  1 ) ( 4 -  1 5 q 2 - 3 4 q  a -  15q~ '+4q '~) E 

_ ( q2 + 1 )( q2 _ 1 )-" (4 - 15q 2 + 4q 4 ) K ] + 3q 4 - 2q 6 ( A. 10 ) 

4 
c(4) = ~ [ (q2 + 1 )( 12 - 28q 2 + 45q 4 + 238q 6 + 45q s - 28q "~ + 12q ~-') E 

_ (q2 + 1 )(q2 _ 1 )2 ( 12 - 28q 2 + 69q 4 - 28q 6 + 12q s) K] - 3q 6 - 4q '~ 

(A.11 

where 

(I E = f , ,  d0 

~2 (1 K = f~ dO 

4 
(q + q -  i)2 sin2 0 

4 sin2 0"~ i_, 
( q + q -  i),_ / 

(A.12 

(A.13 

are elliptic integrals of  the first kind. 

A P P E N D I X  B. THE O N E - P O I N T  F U N C T I O N  FOR BIASED 
D I F F U S I O N  TO THE R I G H T  IN THE 
C O N T I N U U M  L IM IT  

In this appendix we give a p roof  of  Eq. (2.73). We concentrate  on the 
thermodynamic  limit of  models in which the particle mot ion  is subject to 
a drift pointing away from the source which is situated at the left boundary  
( x = 0 )  and we are interested in the large-x behavior  of  the density. The 
starting point  is the con tour  integral (2.50). In the thermodynamic  limit the 
Green function of  the Dirichlet problem is defined by the i = j  = 0 term of  
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the multiple sum of (2.55). We are left with two contributions to the hole 
density function, 

fa ( x , y ) = ~ ( x , y ) +  ~(x,y) (B.1) 

The first one comes from the integration along the diagonal boundary half- 
line 4 (0 ~<x' = y '  < oo), 

IPl f-~-K,(IPI ,',) 
g2~,.(x,y)=~ ~ (o~y--flx) Jo  e-;["-''+"/21da (B.2) 

~,[1~ +_1 rl 

Here 

, 

This is the hole density function in the case of an infinite input rate. 
The second contribution comes from the integration along the left 

boundary half-line (0 ~<y'< co, x' = 0 )  and is ~ dependent: 

= Ill Z p(x+y) s x / ~  ~= +_l 0r 2 

re r 3 ) 

[ 
where r2 = [(a - cox) 2 +y- ' ]  i/2 and 1"3 = [(a - ~v) 2 + x-'] i/2. 

The density profile is determined by the hole density function in the 
limit y ~  x [see Eq. (2.56)]. The behavior of the integrands appearing in 
(B.2) and (B.3) is given by terms of the form Kl(u)/u. For u--*0 the 
modified Bessel functions diverge like K,.(u)~u-" [for R e ( v ) > 0 ] .  The 
only dangerous term is the one containing rL, which vanishes for y --* x and 
a ~ x when 0r = fl = 1. The corresponding term in (B.2), 

I r  f ~ K,(IPl x / (a- (x+y) /2)2+(x-y)Z/4)  (2~(x, y) 
2x Jo x / (a  - (x + y)/2) -~ + (x -y)'-/4 

x e -eE'-c'+yl/2] da (B.4) 

4 We note that the derivatives of the Bessel functions with respect to their argument are 
K'du) = - K t ( u )  and K'l(u ) = --�89 [Ko(u) + K_,(u)]. 
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determines the asymptotic behavior of the particle concentration in the 
thermodynamic limit. We start with this term. We use the fact that 
K,(v/u)/x/~ is the Laplace transform of e -I/14'~ [see Eq. (29.3.122)in 
ref. 13 ]. The Eq. (B.4) can be rewritten 

Q~(x,y)=r ~ exp - IP  2 dt 

[ ( '/1 x exp - t  : a + ~  da 
- I x +  v /2  

(B.5) 

After integrating over the variable a, we get 

 X:o 2] (2~(x, y) = 1 - r - -  exp 

x erfc t: 2 (B.6) 

Here erfc stands for the complementary error function. From (2.56) we get 
that the contribution of t2f)(x, y) to the particle density is 

po(x) = 2 ~nn 3o erfc t : x -  dt (B.7) 

With the change of variable 

~o + ~ 2:x 
t - (B.8)  

27x 

we get 

1 O) 
dco 

f0 ~- 09 erfc(og) din) (B.9)  
+ ~/co 2 + 2:x 

After integrating by parts one gets 

po(x) = ~ + 2:x e .... - do.) (B.IO) 
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Expanding in powers of o92/x, we finally obtain 

1 1 
po(x )=  + 8 ~ x 3 2 + O ( x  -5~-) (B.I1) 

The rest of the hole density function 

t2'~,~,,(x, y )  = ~ ' (x ,  y) -/2',;(x, y) (B.12) 

gives also a contribution to the particle density 

pr~,(x)  = - ~ ~ L , ( x ,  )') ,.=, (B.13} 

In all the integrals contributing to (2'~., t, the arguments of the Bessel 
functions (rs, i =  1, 2, 3) are greater than x (or y). We can thus use the 
as m~p!p_tic expansions of K,.(u) and replace these functions with e x p ( - u ) .  
x/~z/(2u). One obtains an integral expression of pr~t(x). Due to the 
exponential falloff of the integrands appearing in (B.13), one can expand 
them in powers of a/x (where a is the integration variable). After some 
computations one gets that for x ---, ~,, pr~t(x) decays like x -3  _, 

Summing up, we get the following formula for the asymptotic behavior 
of the density profile: 

l__L_(ll p")l ,,) 
p(x) = 4 ~ \ 2 -fi-5_j x 3-----5_, + O( x~ " - (B.14) 

We notice that the leading term is independent of the input rate/~, but the 
next to leading term is fi dependent. 

A P P E N D I X C .  DETAILS ON THE MONTE CARLO 
S IMULATIONS 

In this appendix we explain how we did the simulations of the 
coagulation-diffusion model with particle input at one boundary (PR = 0). 
We can simplify the notation and use the symbol p instead of PL for the 
input rate. 

The simplest way to simulate reaction-diffusion models is to use a 
Monte Carlo algorithm with random sequential updates. However, this 
algorithm is not very efficient for the present problem since particle den- 
sities are very low and therefore most of the updates take place at empty 
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sites. This is why we used a different method in which the positions of the 
particles are stored rather than the occupation numbers of the sites (for 
details see ref. 18 and references therein). This "direct" method is much 
faster than the first one. It is defined as follows. At the beginning the lattice 
is empty. As long as the total number  of particles in the system is 0, the 
following steps are repated: 

�9 Choose randomly a number  a, between 0 and 1. 

�9 Occupy site 1 with a particle if a 4 p  At. 

�9 Leave the site unoccupied if a > p  At. 

�9 Increment the time t ~ t + At. 

The parameter  At is a measure of the time discretization which is used/~8~ 
After the first particle enters the system, the "direct" Monte Carlo algo- 
rithm is started: 

�9 Choose randomly a particle and one of its neighboring sites. 

�9 Update the configuration of the pair chosen before with the help of 
a random number  and by considering the bulk reaction rates. 

�9 Increment the time t--* t + A t / N ,  where N is the current total 
number of particles in the system. 

�9 If  site 1 is empty, try to occupy it by comparing a random number  
with p At/N. I f p  = m, one keeps the site 1 occupied at all time steps. 

In order to test the accuracy of the "direct" Monte Carlo method, we 
simulated some systems for which analytical data are available. The coin- 
cidence is very good. For  q = 1 we used a lattice of length L = 200 and took 
p = 1 and p = 0.01. Only for the first 10-15 sites are the two sets of values 
for the density profile slightly different (the relative difference is less than 
10%). For the other sites the difference between the two determinations of 
the density profile is zero in the limit of the numerical errors. We also com- 
pared data obtained for systems characterized by q = v / ~ ,  L = 20 sites, 
and p = 1 and p =0.1. Although the lattice length is small, the two sets of 
determinations of the density profiles coincide for all sites, in the limit of 
the errors. 

The quality of the Monte Carlo determinations is higher in the case in 
which the particle diffusion is biased to the right in comparison with the 
aR<<.at_ case. This has two reasons. On one hand, in the a n > a  L case 
the total concentration of particles in the stationary state is larger than in 
the symmetric case. It is more likely to reproduce through simulations a 
distribution with a higher total number  of particles. On the other hand, the 
relaxation of these system to the stationary state occurs much faster than 

82Z 86 5-6-22 
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in the a R = a L  case since the time operator has massive excitations for 
a~ r  This implies a smaller CPU time per run and thus the reduced 
numerical errors of the measurements are smaller. 

It is well known that the quality of the Monte Carlo determinations 
is limited by the accuracy of the random number generator. If the number 
of steps requiring different random numbers is too high, at some point 
the generator produces correlated numbers. This limitation posed some 
problems in the case of symmetric diffusion for large lattices. This explains 
the unphysical oscillations presented by the data corresponding to 
L = 1000 in Figs. 3 and 4. The choice of a better random number generator 
implies the increase of the CPU time needed to perform the simulations. 

Since we are interested in the stationary properties of the system, we 
stopped each simulation run at a value of t = t ...... such that, at least in the 
time interval I t  ..... /3, t ...... ], the average total number of particles is fluc- 
tuating around a constant value. We used a double-averaging technique. 
We took I00 equidistant time points between [0.9t ....... t ...... ] and measured 
our observables in each of them. For each Monte Carlo run of the program 
we got a preliminary value by averaging over this 100 determinations. 
Afterward we averaged this preliminary value over all MC runs. The 
number of runs performed for each system was between 4000 and 50,000, 
depending on the lattice length. Due to CPU time limitations, the number 
of runs we performed decreases with the lattice length. 

For the data presented in Figs. 3 and 4 we used coarse graining for 
obvious reasons; this is reflected in the horizontal error bars. 
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